

Connected Aircraft Applications

Andy Borgyos

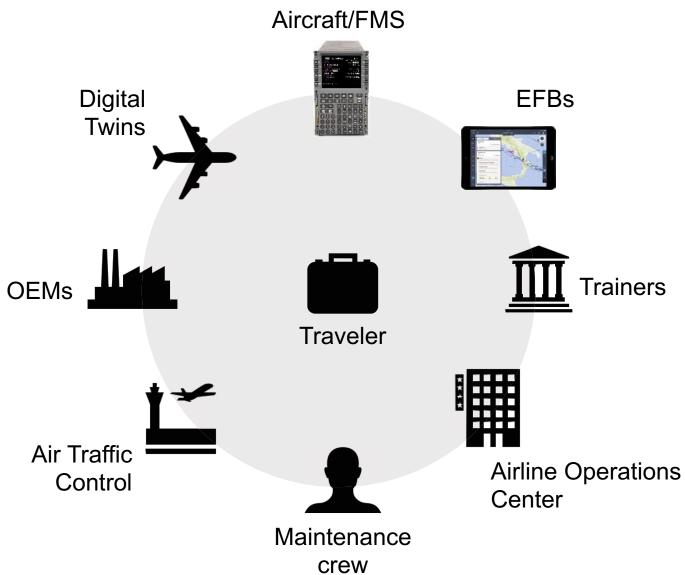
Connected Aviation Intelligence Summit, September 8, 2023

Connected Aircraft 1.0

Connected operations

- Business trajectory + airspace constraints
- AOC, CPDLC messages
- SWIM

Challenges/opportunities


- Performance
- Cost of change
- Connectivity/applications
- Timing

Objectives

- Evolved vision for connected aircraft
- Applications of interest

Connected Aircraft Ecosystem "2.0"

New users/use cases

- EFBs
- Trainers
- Maintenance crew
- OEM
- Digital twins
- Traveler

Timing

- Pre-flight
- During flight
- Post-flight

Key principles/needs

- Connectivity/connectedness
- Security
- Low-cost, rapid change
- Data and digital-twins

- FMS Overview

Flight Management Civil pedigree ... 3 generations; 14,000+ deliveries; 35+ years

1985

Introduction of first FMS

- Lateral navigation functions
- Vertical navigation functions

Launch platform

2010

Advanced features

- New approaches ... GPS, LPV, RNP
- New waypoint leg types

Launch platforms

A330

3rd Generation

2022+

Modular flight management application

- Low-cost updates
- Platform agnostic

Targeted platforms

eVTOL

Rotorcraft

Flight Management System Overview Key functionality and interfaces

Flight plan and trajectory management

- Computes the intended aircraft trajectory lateral, vertical, speed, fuel, and time
- Fuel optimal trajectory, economy speeds

Flight guidance

- Vertical navigation
- Lateral navigation

Interfaces

- CDU (Control Display Unit) for pilot input
- ND (Navigation Display) for geographic display of the plan and aeronautical data
- DataComm interface

Cockpit interfaces to the FMS

Flight Management System Overview

Example: flight planning

Flight plan entry

- Manual entry
- Pre-loaded company routes
- Upload using ACARS (datalink)

Flight plan review and activation

- Check for constraints, discos, etc.
- Review the flight plan displayed on the ND only displays a subset of published aeronautical information (ARINC 424 data)

Aeronautical charts

- Paper charts
- Digital charts stored on EFB

Example Operational Flight Plan (OFP)

Crew entry of the flight plan

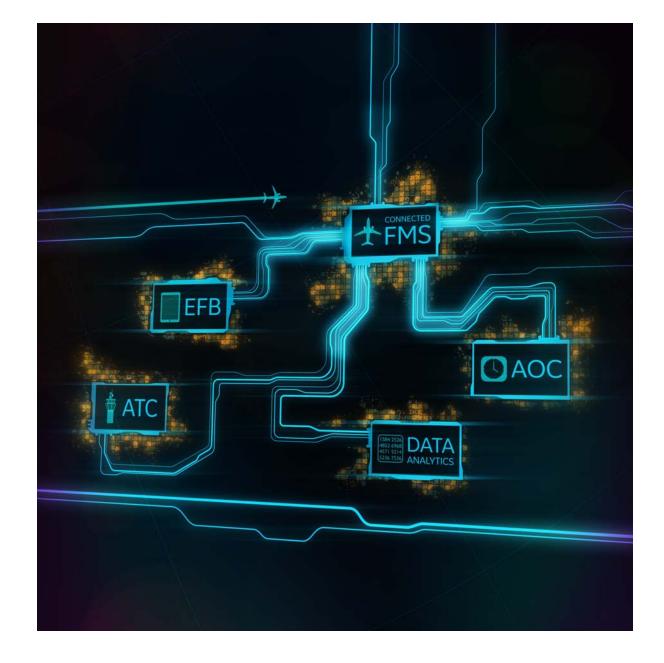
- Electronic Flight Bag

Missing: connectivity between FMS and EFB

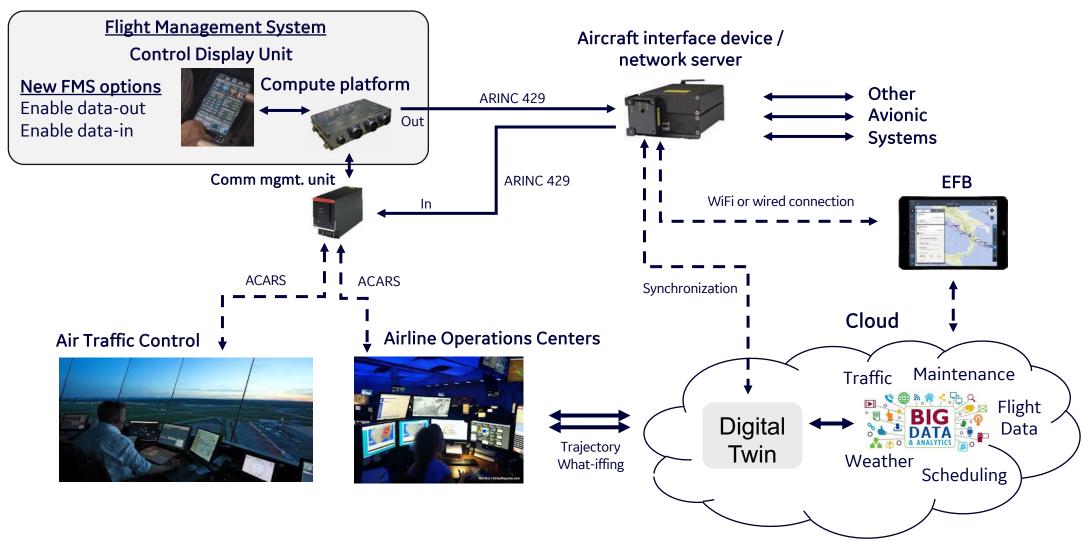
Other EFB use cases

- Filing flight plans
- Obtaining a complete view of aeronautical information content and a strategic view of the flight procedure
- Verifying FMS entered procedure/routes and constraints
- Off-line performance calculations (V-speeds, weights, temperatures, take-off thrust)

EFB and FMS lack a two-way connectivity in the cockpit, today.


Double-entry reduces situational awareness, requires additional workload, and is prone to entry errors

Connected Flight Management System


An environment where your tablet applications are seamlessly connected to the flight management system and your flight operation center.

- Improves situational awareness
- Enables flight optimization to reduce DOC, upload of custom performance parameters
- Reduces pilot workload
- Improves coordination with dispatch and ATC
- Enables capture of aircraft data to support postflight maintenance and investigation
- Open interface enables BYO-devices/apps

Connected FMS – Safe, secure, open & connected

Software Development Kit (SDK) – Airline / 3rd Party App Integration

Combination of test equipment and software libraries to support the application developer

FMS

Real FMS running on COTS hardware platform

Example Apps

Hello World, basic startup Data parsing examples **Networking Example**

Aircraft Simulation

Full aircraft level simulation environment provided on user PC

Documentation

Setup / Connectivity Aircraft Simulation Libraries for C, C++, SWIFT, ObjC Top Level and Detailed Functional Calls **Release Notes**

App Libraries

iOS & Surface Pro Support C# / C++ / Objective C / Swift Wrapper Communication Security Data Encode/Decode

Support

GE technical support

Trajectory-BasedOperations

Trajectory-based Operations use cases enabled by Trajectory Synchronization

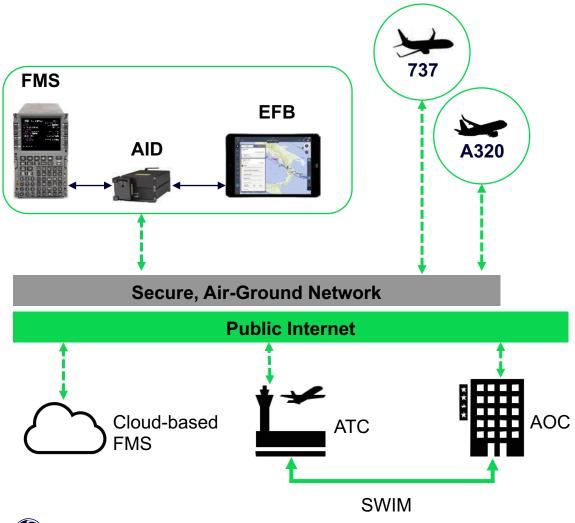
Time-Based Management

- Flow management
- Arrival/Extended Arrival/Departure Management

Advanced Air Mobility and UAS Traffic Management

- Strategic coordination
- Demand Capacity Balance
- Integration of new operations into airspace

Cloud Flight Management System


Cloud FMS synchronizes with the airborne FMS/EFB and enables enhanced decision making and awareness.

- Streamline coordination: pilot, ATC, and AOC
- Model alternate routes with the most accurate information possible
- Enables "what-if" capability for ground applications
- Extend FMS SW with minimal certification impact
- Arrival Management: potential to reduce DOC, workload, CO2 emissions, and noise

Overview: Cloud FMS

System components

- Secure, air-ground network
- Public internet
- Safety-critical functions on the flight deck
- Non-safety critical functions
 - Optional EFB (i.e., Connected FMS) for enhanced pilot interface, negotiation
 - Cloud-based FMS (digital twin) for synchronization

NASA SBIR Cloud FMS project

Team

Mosaic ATM, SmartSky Networks, and GE Aerospace

Objectives

- Assess impact on flight plan negotiation
- Assess impact on air-ground datalink disruption
- Demonstrate data exchange and key function in lab and flight-test environment

Outcomes observed

- · Reduction in flight plan negotiation time
- Secure in-flight connectivity (IFC) service can provide the required functional performance in the connection between the aircraft and Cloud FMS

Next steps

- Support NASA Digital Flight research
- Potentially support FAA connected aircraft and Info-centric NAS research
- Implementation in the NAS

Demonstration components: (1) non-safety critical airbone FMS, (2) Aircraft, and (3) laboratory environment.

- FMS Trainer

Virtual FMS environment - Training & Development

